

kdFi V1.4 PNP GM C20XE/C20LET R06

(Stand: 28.11.2021)

Anleitung (Deutsch)

Auf www.k-data.org finden Sie immer die neuesten Informationen, Dokumentationen und CD Images.

Inhaltsverzeichnis

- 1. Einleitung
- 2. Lieferumfang
- 3. Software
 - 3.1 USB Treiber
 - 3.2 Tunerstudio
- 4. Anschluss
 - 4.1 Kabeltypen
 - 4.2 Sicherungen
 - 4.3 USB Anschluss
 - 4.4 Belegung der Zusatzklemmen

5. Inbetriebnahme

- **5.1** LED's
- 5.2 Drehzahlerfassung
- 5.3 Sensoren
- 5.4 Drosselklappenpotentiometer
- 5.5 Digital Input
- **5.6 Table Switch**
- **5.7 Barometric Correction**
- **5.8 Tacho Output**
- 5.9 Leerlaufregler
- 5.10 Zündung
- 5.11 Einspritzung
- 5.12 Relais Output / Ladedruckregelung
- **5.13 CAN Bus**
- 6. Basisplatine
- 7. Breitbandcontroller
- 8. Firmware Updates
- 9. Notizen

1. Einleitung

Die Schaltung des kdFi basiert auf der Megasquirt MS2 V3.0. Sie wurde für die Firmware MS2extra weiterentwickelt und mit Zusatzschaltungen versehen, um eine einfache Anpassung an möglichst viele Motoren zu ermöglichen.

Ein Wideband Lambdacontroller (breitband-lambda.de) auf der Platine ist ebenfalls vorbereitet. Eine Bosch LSU 4.2 Lambdasonde kann direkt angeschlossen werden, ohne dass ein weiterer Controller gekauft werden muss.

Außerdem wurden zur einfacheren Handhabung die seriellen Eingänge durch einen internen USB Anschluss ersetzt, welcher galvanisch vom PC getrennt ist.

2. Lieferumfang

- kdFi V1.4 Fertiggerät
- Software CD
- Anleitung
- USB Kabel
- Steckerset

3. Software

Es wird empfohlen, die Software vor dem ersten Anschluss des kdFi vom Startmenü der CD aus zu installieren.

3.1 USB Treiber

Den USB Treiber der Firma FTDI finden Sie auf der CD im Verzeichnis "USB". Es handelt sich um den FTDI232 Chip.

Der Chip simuliert eine RS232 Verbindung die auf 2 Arten genutzt werden kann:

- 1. Tunerstudio Communications Settings: RS232, COM-port, 115200 Baud
- 2. Tunerstudio Communications Settings: Wireless and USB (nur in der registrierten Version), Auto , 115200 Baud

3.2 Tunerstudio

Wir empfehlen zur Abstimmung die Software Tunerstudio, welche im Internet unter Tunerstudio.com verfügbar ist. Eine Beschreibung dazu finden Sie auf der Homepage des Herstellers.

Alle Einstellungen können mit der unregistrierten Version angepasst werden.

Für das DIY-Tuning empfehlen wir die registrierte Version, da Sie über Zusatzfunktionen verfügt.

Registrierungscodes für Tunerstudio sind bei uns nicht erhältlich, kaufen Sie diese bitte direkt bei tunerstudio.com.

4. Anschluss

Um sich mit dem Steuergerät zu verbinden, muss das kdFi mit 12V versorgt werden.

4.1 Kabeltypen

Empfohlene Kabeltypen:

Zündung:

min 1,5 mm²

Einspritzung:

min 1,5 mm²

VR Geber:

min 0,5 mm², geschirmt

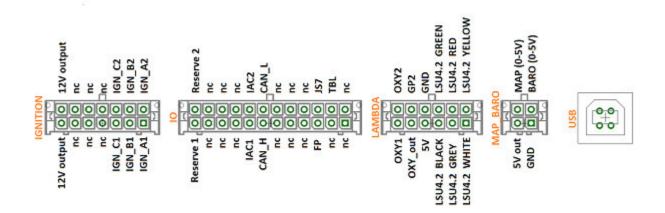
Sensoren:

min 0,5 mm²

Übrige Kabel:

min 0,75 mm²

4.2 Sicherungen


Dem kdFi wie auch allen anderen mit Spannung versorgten Teilen muss eine Sicherung vorgeschaltet werden. Die Amperezahl der Sicherung darf die maximal zulässige Amperezahl des Kabels nicht überschreiten.

4.3 USB Anschluss (galvanisch getrennt)

Der USB Chip ist bis zur galvanischen Trennung "USB Powered" um bei einem Reset des Steuergerätes schneller wieder eine Verbindung aufbauen zu können. Als Verbindungskabel kann jedes Standard USB Kabel verwendet werden.

4.4 Belegung der Zusatzklemmen

Die programmierbaren Ein-/ Ausgänge des kdFi sind auf der Platine bereits mit der entsprechenden Erweiterungsschaltung verbunden.

5. Inbetriebnahme

5.1 LED's

Bezeichnung	Farbe	Funktion
LD1	rot	Anschlussfehler
LD2	grün	Versorgungsspannung OK
LD3	gelb	Datenpaket von USB an MS2
LD4	grün	Datenpaket von MS2 an USB
LD5	blau	Zündimpuls A
LD6	blau	Zündimpuls B
LD7	blau	Zündimpuls C
LD8	blau	Zündimpuls D
LD9	blau	Zündimpuls E
LD10	blau	Zündimpuls F
LD11	rot	Widebandcontroller Fehler
LD12	grün	Widebandcontroller LED an: Standby
LD12	grün	Widebandcontroller LED blinkt langsam: Betrieb
LD12	grün	Widebandcontroller LED blinkt schnell: Sonde aufheizen

Die LEDs LD5 bis LD10 können softwarebedingt auch andere Funktionen haben. Diese sind von den Einstellungen des Kunden abhängig.

5.2 Drehzahlerfassung

VR Geber

Bei Opel-Motoren C20XE und C20LET erfolgt die Drehzahlerfassung über einen VR Geber. Dabei wird durch eine Metallscheibe mit 60-2 Zähnen eine Wechselspannung in der Spule des VR Gebers induziert. Beim kdFi V1.4 wurde ein spezialisiertes Bauteil eingesetzt, welches die Adaption auf verschiedene Sensoren selbst durchführt.

5.3 Sensoren

Das kdFi ist ab Werk intern auf Bosch Sensoren abgestimmt. Eine getrennte Kalibrierung der Sensoren ist per Software möglich.

5.4 Drosselklappenpotentiometer

Das Drosselklappenpotentiometer kann bei Verwendung des Saugrohdruckes entfallen. Bei getunten Saugmotoren empfehlen wir die Alpha-N Einstellung, für die ein Drosselklappenpoti benötigt wird.

An die äußeren, statischen Anschlüsse des Potis werden +5V und GND angeschlossen. Über den Schleifkontakt wird die der Drosselklappenstellung entsprechende Spannung abgegriffen und am Eingang TPS (Throttle Position Sensor) angeschlossen.

Der mögliche Weg des Potis darf dabei größer sein als die Drehung der Drosselklappenachse. Die entsprechende Kalibrierung erfolgt über "Tools" – "Calibrate TPS". Die PNP GM C20XE und C20LET sind bereits mit einem Drosselklappenpotentiometer ausgestattet., welches beim kdFi verwendet wird.

5.5 Digital Input

Es steht ein digitaler Eingang zur Verfügung, der z.B. für die "Launch Control" verwendet werden kann. Die entsprechende Funktion muss in Megatune festgelegt werden. Als Eingang ist hierbei JS7 anzugeben.

5.6 Table Switch

Über den Eingang "TBL" kann ein zweiter Parametersatz im Steuergerät aktiviert werden. Durch einen Schalter, der den Eingang auf Masse legt, wird zwischen zwei hinterlegten Zünd- und Einspritzkennfeldern umgeschaltet. Dies ist sinnvoll bei verschiedenen Abstimmungen wie: Straße/Rennbetrieb, Benzin/Gas, Benzin/E85 usw. Der Anschluss einer höheren Spannung als 5V führt zur Zerstörung des Prozessors des kdFi. Digitaleingänge dürfen nur gegen Masse geschaltet werden.

5.7 Barometric Correction

Zur Nutzung der permanenten Höhenkorrektur muss auf der Rückseite ein zweiter Absolutdrucksensor (MPX4250) eingebaut sein, welcher ab Werk nicht installiert ist. Die Option "Barometric Correction" muss in "Basic Settings" – "General,lags" aktiviert und unter "Extended" – "Barometric Correction" eingestellt werden. Als Eingang muss JS4 gewählt sein.

5.8 Tacho Output

Für Standard-Drehzahlmesser ist der Ausgang "Tacho Output" vorgesehen. Dieser wurde in der Software unter "Extended" – "Tacho Output" aktiviert. Als "Output on" ist "JS10" bereits gewählt. Diese Einstellungen sollten nicht verändert werden

5.9 Leerlaufregler

Der Serienleerlaufsteller wird weiterhin verwendet. Die Einstellungen finden Sie unter "Startup/Idle" alle Einstellungen mit Idle.

5.10 Zündung (Option Einzelfunken, auf Klemmen geführt)

Über den auf dem kdFi V1.4 vorhandenen Leistungstreiber wird die Zündspule direkt angesteuert. Das kdFi besitzt 6 Leistungstreiber, was eine direkte Ansteuerung von bis zu 6 Zündspulen im Wasted Spark Prinzip ermöglicht. Hierfür wird ein mehradriges, geschirmtes Kabel empfohlen. Um aktive Zündspulen wie die vom TFSI zu verwenden, beachten Sie bitte unser "Ignition Coils Conversion sheet" das Sie von unserer Produkt-Website herunterladen können.

5.11 Einspritzung

Die Einspritzdüsen werden dem Serienkabelbaum entsprechend gruppenweise angesteuert. Bitte verändern Sie die unten stehenden Werte nur, wenn Sie es wirklich benötigen.

Grundsätzlich empfehlen wir nur hochohmige Einspritzdüsen . (12 – 16 Ohm)

Achtung: Bei der Version 1.4 werden auch bei niederohmigen Düsen 100%

Current Limit eingestellt, da die Hardware den Strom für die

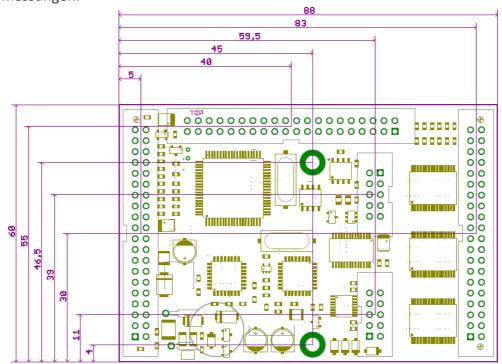
Einspritzdüsen regelt.

Bei der Verwendung von niederohmigen Düsen darf nur eine

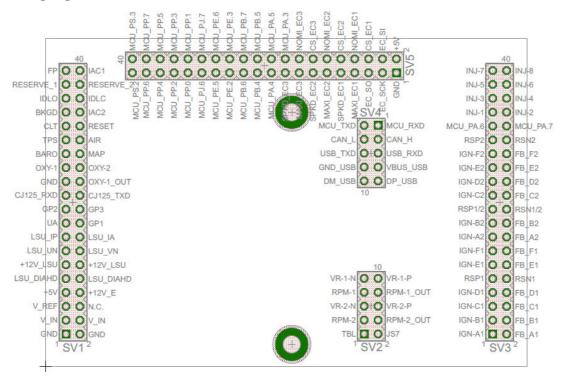
Einspritzdüse pro Ausgang angeschlossen werden.

5.12 Relais Output / Ladedruckregelung (IAC1 auf Klemmen)

"IAC1" und "IAC2" können sowohl als Relaiausgänge wie auch als PWM Ausgänge z.B. für das Ladedruckregelventil benutzt werden. Schaltleitstung max. 2 Ampere


5.13 CAN Bus

Der CAN Bus ist wie bei der Megasquirt 2 hardwareseitig vorbereitet, muss aber - sofern gewünscht - noch vom User entsprechend programmiert werden. Weitere Informationen hierzu finden Sie im Internet auf den einschlägigen Megasquirt/MSextra Seiten.



6. Basisplatine

Abmessungen:

Belegung:

Pinout:

Con	Pin Signalname	Description	Typ Application	I/O	Туре
SV1	1 GND	Power In (Ground)	Main GND	I	
SV1	2 GND	Power In (Ground)	Main GND	I	
SV1	3 V_IN	Power In (12V)	12V Igniotion on	I	
SV1	4 V_IN	Power In (12V)	12V Igniotion on	1	
SV1	5 <mark>V_REF</mark>	REF Out			
SV1	6 -	Not Connected		nc	
SV1	7 <mark>+5V</mark>	+5V Out for sensors and circuits		0	
SV1	8 <mark>+12V_E</mark>	+12V Out sensors and circuits		0	
SV1	9LSU_DIAHD	Lambda-Sensor Heat PWM	LSU 4.2 grau		
SV1	10 LSU DIAHD	Lambda-Sensor Heat PWM	LSU 4.2 grau		
SV1	11+12V LSU	Lambda-Sensor Heat +12V	LSU 4.2 weiß		
SV1	12+12V LSU	Lambda-Sensor Heat +12V	LSU 4.2 weiß		
SV1	13 LSU UN	Lambda-Sensor Signal UN	LSU 4.2 schwarz		
SV1	14 LSU VM	Lambda-Sensor Signal VM	LSU 4.2 gelb		
SV1	15 LSU IP	Lambda-Sensor Signal IP	LSU 4.2 rot		
SV1	16 LSU IA	Lambda-Sensor Signal IA		nc	
SV1	17 UA	Lambda Amplifier Out		nc	
SV1	18 GP1	I/O-Port ATmega8		T	TTL
SV1	19 GP2	Start Lambdacontroler		Ť	TTL
SV1	20 GP3	I/O-Port ATmega8		1	TTL
SV1	21 CJ125 RXD	RS232-Interface to CJ125		Ť	ΠL
SV1	22 CJ125 TXD	RS232-Interface to CJ125			TTL
SV1	23 GND	Ground for Pin 24	GND		· · · -
SV1	24 OXY-1 OUT	Wideband Sensor Output	SV1-25	0	0-5V
SV1	25 OXY-1	Analogsignal OXY 1	Lambdasensor 1	Ť	0-5V
SV1	26 OXY-2	Analogsignal OXY 2	Lambdasensor 2	ΤĖ	0-5V
SV1	27 BARO	Analogsignal BARO	Barometric Sensor	ti	0-5V
SV1	28 MAP	Analogsignal MAP	Map Sensor	ΤĖ	0-5V
SV1	29 TPS	Analogsignal TPS	Throttle Position	ΗĖ	0-5V
SV1	30 AIR	Analogsignal AIR	Airtemp Sensor	ΗĖ	Resistor
SV1	31 CLT	Analogsignal CLT	Coolant Sensor	ΗĖ	Resistor
SV1	32 RESET	Signal Reset Low-Active	Coolant Sensor	nc	resistor
SV1	33 BKGD	Signal Background Interface Pin		nc	
SV1	34 IAC1	Signal IAC1 (e.g. RPM in Instr. cluster)	_	0	
SV1	35 IDLO	Idle Valve Open	_	0	switched GND
SV1	36 IDLC	Idle Valve Close	_	0	
	***	-	_	-	switched GND
SV1	37 RESERVE_1	Reserve 1		nc	
SV1	38 RESERVE_2	Reserve 2	_	nc	
SV1	39 FP	Fuel Pump		0	switched GND
SV1	40 IAC2	Signal IAC2		0	

Con	Pin Signalname	Description	Typ Application	I/O	Туре
SV2	1 TBL	Signal TBL			ΠL
SV2	2 JS7	Signal JS7		1	ΠL
SV2	3RPM-2	Signal RPM-Sensor 2	SV2-4	I	
SV2	4 RPM-2_OUT	RPM-Sensor_2 Output	SV2-3	0	
SV2	5 VR-2-N	Cam Signal Negative	GND	I	
SV2	6VR-2-P	Cam Signal Positive	Hall Sensor	I	
SV2	7 RPM-1	Signal RPM-Sensor 1	SV2-8	- 1	
SV2	8 RPM-1_OUT	RPM-Sensor_1 Output	SV2-7	0	
SV2	9 VR-1-N	Crank Signal Negative	VR / Hall Sensor	1	
SV2	10 VR-1-P	Crank Signal Positive	VR / Hall Sensor	1	

Con	Pin Signalname	Description	Typ Application	I/O Type
SV3	1 <mark>IGN-A1</mark>	Ignition_A1	Gate IGBT	0
SV3	2FB_A1	Feedback_A1	Collector IGBT	1
SV3	3 <mark>IGN-B1</mark>	Ignition_B1	Gate IGBT	0
SV3	4FB_B1	Feedback_B1	Collector IGBT	1
SV3	5 <mark>IGN-C1</mark>	Ignition_C1	Gate IGBT	0
SV3	6 FB_C1	Feedback_C1	Collector IGBT	1
SV3	7 <mark>IGN-D1</mark>	lgnition_D1	Gate IGBT	0
SV3	8 FB_D1	Feedback_D1	Collector IGBT	1
SV3	9RSP1	Current Resistor Sense Positive	GND	
SV3	10 RSN1	Current Resistor Sense Negative	GND	
SV3	11 IGN-E1	Ignition_E1	Gate IGBT	0
SV3	12 FB_E1	Feedback_E1	Collector IGBT	1
SV3	13 IGN-F1	Ignition_F1	Gate IGBT	0
SV3	14 FB_F1	Feedback_F1	Collector IGBT	1
SV3	15 <mark>IGN-A2</mark>	Ignition_A2	Gate IGBT	0
SV3	16 FB_A2	Feedback_A2	Collector IGBT	1
SV3	17 IGN-B2	Ignition_B2	Gate IGBT	0
SV3	18 FB B2	Feedback B2	Collector IGBT	1
SV3	19 RSP1/2	Current Resistor Sense Positive	GND	
SV3	20 RSN1/2	Current Resistor Sense Negative	GND	
SV3	21 IGN-C2	Ignition_C2	Gate IGBT	0
SV3	22 FB C2	Feedback C2	Collector IGBT	1
SV3	23 IGN-D2	Ignition_D2	Gate IGBT	0
SV3	24 FB_D2	Feedback_D2	Collector IGBT	1
SV3	25 IGN-E2	Ignition_E2	Gate IGBT	0
SV3	26 FB_E2	Feedback_E2	Collector IGBT	1
SV3	27 IGN-F2	lgnition_F2	Gate IGBT	0
SV3	28 FB_F2	Feedback_F2	Collector IGBT	1
SV3	29 RSP2	Current Resistor Sense Positive	GND	
SV3	30 RSN2	Current Resistor Sense Negative	GND	
SV3	31 MCU_PA.6	Signal MCU_PA.6		nc
SV3	32 MCU_PA.7	Signal MCU_PA.7		nc
SV3	33 INJ-1	Injector_1	Ground Injector	0
SV3	34 INJ-2	Injector_2	Ground Injector	0
SV3	35 INJ-3	Injector_3	Ground Injector	0
SV3	36 INJ-4	Injector_4	Ground Injector	0
SV3	37 INJ-5	Injector_5	Ground Injector	0
SV3	38 INJ-6	Injector_6	Ground Injector	0
SV3	39 INJ-7	Injector_7	Ground Injector	0
SV3	40 INJ-8	Injector_8	Ground Injector	0

Con	Pin Signalname	Description	Typ Application	I/O Type
			_	
SV4	1 MCU_RXD	RS232-Interface to MC9S12C64	SV4-6	
SV4	2 MCU_TXD	RS232-Interface to MC9S12C64	SV4-5	
SV4	3 CAN H	CAN-BUS-Interface to MC9S12C64	nc	
SV4	4CAN_L	CAN-BUS-Interface to MC9S12C64	nc	
SV4	5USB RXD	RS232-Interface to FT232R (Optocoubler)	SV4-2	
SV4	6USB TXD	RS232-Interface to FT232R (Optocoubler)	SV4-1	
SV4	7 VBUS_USB	USB-Interface	USB red	
SV4	8 GND_USB	USB-Interface	USB black	
SV4	9 DP USB	USB-Interface	USB green	
SV4	10 DM USB	USB-Interface	USB white	

Con	Pin Signalname	Description	Typ Application	I/O	Туре
SV5	1 GND	Power		nc	
SV5	2+5V	Power		nc	
SV5	3EC SCK	SPI Bus		nc	
SV5	4EC SI	SPI Bus		nc	
SV5	5EC SO	SPI Bus		nc	
SV5	6 CS EC1	SPI Bus Engine Controller 1		nc	
SV5	7 MAXI EC1	SPI Bus Engine Controller 1		nc	
SV5	8 NOMI EC1	SPI Bus Engine Controller 1		nc	
SV5	9 SPKD EC1	SPI Bus Engine Controller 1		nc	
SV5	10 CS EC2	SPI Bus Engine Controller 2		nc	
SV5	11 MAXI EC2	SPI Bus Engine Controller 2		nc	
SV5	12 NOMI EC2	SPI Bus Engine Controller 2		nc	
SV5	13 SPKD EC2	SPI Bus Engine Controller 2		nc	
SV5	14 CS EC3	SPI Bus Engine Controller 3		nc	
SV5	15 MAXI EC3	SPI Bus Engine Controller 3		nc	
SV5	16 NOMI EC3	SPI Bus Engine Controller 3		nc	
SV5	17 SPKD EC3	SPI Bus Engine Controller 3		nc	
SV5	18 MCU PA.3	Signal MCU PA.3		nc	
SV5	19 MCU PA.4	Signal MCU PA.4		nc	
SV5	20 MCU PA.5	Signal MCU PA.5		nc	
SV5	21 MCU PB.4	Signal MCU PB.4		nc	
SV5	22 MCU PB.5	Signal MCU PB.5		nc	
SV5	23 MCU PB.6	Signal MCU PB.6		nc	
SV5	24 MCU PB.7	Signal MCU PB.7		nc	
SV5	25 MCU PE.2	Signal MCU PE.2		nc	
SV5	26 MCU_PE.3	Signal MCU_PE.3		nc	
SV5	27 MCU_PE.5	Signal MCU_PE.5		nc	
SV5	28 MCU_PE.6	Signal MCU_PE.6		nc	
SV5	29 MCU_PJ.6	Signal MCU_PJ.6		nc	
SV5	30 MCU_PJ.7	Signal MCU_PJ.7		nc	
SV5	31 MCU_PP.0	Signal MCU_PP.0		nc	
SV5	32 MCU_PP.1	Signal MCU_PP.1		nc	
SV5	33 MCU_PP.2	Signal MCU_PP.2		nc	
SV5	34 MCU_PP.3	Signal MCU_PP.3		nc	
SV5	35 MCU_PP.4	Signal MCU_PP.4		nc	
SV5	36 MCU_PP.5	Signal MCU_PP.5		nc	
SV5	37 MCU_PP.6	Signal MCU_PP.6		nc	
SV5	38 MCU_PP.7	Signal MCU_PP.7		nc	
SV5	39 MCU_PS.2	Signal MCU_PS.2		nc	
SV5	40 MCU PS.3	Signal MCU_PS.3		nc	

7. Breitbandlambdakontroller (www.breitband-lambda.de)

Der integrierte Lambdakontroller wird durch das Schalten des Einganges "GP2" nach Masse aktiviert. Dies kann dauerhaft mit einer Brücke erledigt werden, da das kdFi nur unter Spannung steht, solange die Zündung eingeschaltet ist.

Im Anschlussstecker muss das Signal von OXY_out auf den Eingang OXY1 verbunden werden. Bei unserem Anschlusskabel sind die nötigen Verbindungen bereits vorhanden.

Das Messsignal wird als 0-5V an OXY_out ausgegeben und entspricht der Einstellung: PLX Signal 0-5V = AFR10-AFR20.

Diese Kennlinie ist in Tunerstudio hinterlegt und wurde bereits beim Test des Steuergerätes geladen. Nach einem Firmware-Update muss diese Kennlinie jedoch erneut ausgewählt werden.

8. Firmware Updates

Firmware-Updates werden immer auf eigene Gefahr durchgeführt. Es kann passieren, dass durch Verbindungsabbrüche oder inkompatible PCs / Software die vorhandene Firmware gelöscht wird und nur über ein BDM Interface wieder geladen werden kann. Dies wird von uns angeboten, ist allerdings keine Garantieleistung! Tunerstudio muss während des Firmware-Updates geschlossen sein, um Zugriffskonflikte zu verhindern.

Die Zündspulen müssen während des Firmware-Updates abgesteckt sein, bis wieder die passende Konfiguration per MSQ Datei geladen wurde.

9. Notizen			
	-		