

kdFi V1.3 R89

Manual

Abb. ähnlich

Auf <u>www.k-data.org</u> finden Sie immer die neuesten Informationen, Dokumentation und CD Images

Inhaltsverzeichnis

1.	EIN	NLEITUNG	3
2.	LII	EFERUMFANG	3
3.	SO	FTWARE	3
	3.1	USB	
	3.1	MEGATUNE	
	3.3	JAW	
4.	AN	SCHLUSS	4
	4.1	KABELTYPEN	
	4.2	USB Anschluss	
	4.3	SCHALTBILD	
	4.4	Belegung	
	4.5	TESTBUCHSE	6
5.	LÖ	TJUMPER	7
	5.1	F-IDLE	7
	5.2	RPM IN	
	5.3	RPM OUT	
	5.4	OPTO_GND	
	5.5	HALL PU	
	5.6	JAW	9
	5.7	R0	9
	5.8	BARO_OXY	
	5.9	IGN_A – IGN_D	
	5.10	SJ201 – SJ204	
	5.11	TxD/RxD	9
6.	INI	BETRIEBNAHME	10
	6.1	LEUCHTDIODEN	10
	6.2	Drehzahlerfassung	10
	6.3	Sensoren	
	6.4	DROSSELKLAPPENPOTENTIOMETER	
	6.5	KNOCK INPUT	
	6.6	DIGITAL INPUT	
	6.7	Kennfeldumschaltung	
	6.8	BAROMETRIC CORRECTION	
	6.9	TACHO OUTPUT	
	6.10	LEERLAUFREGLER	
	6.11	ZÜNDUNG	
	6.12 6.13	EINSPRITZUNG	
	6.14	RELAIS OUTPUTLADEDRUCKREGELUNG	-
	6.15	JAW	
	6.16	CAN Bus	
7.	FII	RMWARE UPDATES:	
Q	NO	TIZEN.	14

1. Einleitung

Herzlichen Glückwunsch zum Kauf des kdFi V1.3.

Die Schaltung des kdFi basiert auf der Megasquirt MS2 V3.0. Sie wurde für die Firmware MS2extra weiterentwickelt und mit Zusatzschaltungen versehen, um eine einfache Anpassung an möglichst viele Motoren zu ermöglichen.

Ein Wideband Lambdacontroller (JAW) auf der Platine ist ebenfalls vorbereitet. Die Bosch LSU 4.2 Lambdasonde und der JAW Mikroprozessor müssen als Zubehör gekauft werden, um diese Funktionen nutzen zu können.

Außerdem wurden zur einfacheren Handhabung die seriellen Eingänge durch einen USB Anschluss ersetzt.

2. Lieferumfang

- kdFi V1.3 Fertiggerät
- Software CD
- Kühlkörper inkl. Montagematerial
- USB Kabel
- Anleitung

3. Software

Es wird empfohlen, die Software vor dem ersten Anschluss des kdFi vom Startmenü der CD aus zu installieren.

3.1 USB

Den USB Treiber der Firma FTDI finden Sie auf der CD im Verzeichnis "USB". Es handelt sich um den FTDI2232 Chip.

3.2 Megatune

Die Megatune Installationsdateien befinden sich auf der CD im Verzeichnis "Megatune". Es wird empfohlen, die BETA Software zu installieren, da diese bereits sehr stabil läuft und wesentliche Vorteile gegenüber der Release hat. Falls Sie die Release Version nutzen wollen, müssen sie ein Firmwareupdate mit der entsprechenden Version durchführen.

Während der Installation werden Motorparameter abgefragt. Geben Sie hier am besten gleich die späteren Einstellungen an, da dies die Inbetriebnahme wesentlich vereinfacht.

Bei der Nutzung der JAW empfehlen wir, als Widebandsonde die "Innovate LC-1" auszuwählen und in der Software "JAW Deploy" anschließend die Kennlinie der LC-1 einzustellen. Beide Systeme sind frei einstellbar, d.h. Sie können prinzipiell jede Kennlinie verwenden, solange sie in beiden Systemen (MS und JAW) gleich ist.

3.3 **JAW**

Die JAW Deploy Installationsdateien finden Sie auf der CD im Verzeichnis "JAW".

4. Anschluss

4.1 Kabeltypen

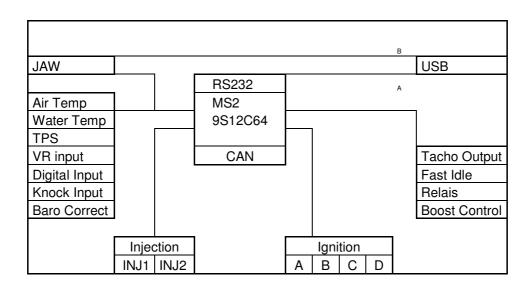
Empfohlene Kabeltypen:

Zündung: min 1,5 mm² Einspritzung: min 1,5 mm²

VR Geber: min 0,5 mm² geschirmt
Sensoren: min 0,5 mm² geschirmt

Übrige Kabel: min 0,75 mm²

4.2 USB Anschluss


Der USB Baustein ist sowohl USB 1.1 als auch USB 2.0 kompatibel. Als Verbindungskabel kann jedes Standard Mini-USB Kabel verwendet werden.

Der integrierte USB Anschluss stellt zwei serielle Schnittstellen zur Verfügung, welche im Gerätemanager von Windows angezeigt werden. An dem ersten COM Port ist der MS2 Prozessor angeschlossen, am Zweiten die JAW.

ACHTUNG: Die COM Ports darf nicht über COM8 liegen, da es sonst zu Kommunikationsproblemen mit

Megatune kommen kann. Wenn dies der Fall ist, löschen Sie bitte unbenutzte / unsichtbare Ports (inkl. der kdFi Ports) aus Ihrer Konfiguration und installieren Sie die Treiber erneut.

4.3 Schaltbild

4.4 Belegung

Die programmierbaren Ein-/ Ausgänge des kdFi sind auf der Platine bereits mit der entsprechenden Erweiterungsschaltung verbunden.

Anschlüsse:

GND		Masse, mehrfach vorhanden			
HALL	E	Eingang HALL Sensor			
TBL	Е	Table Switch / Kennfeldumschaltung			
FP	Α	Fuel Pump / Benzinpumpe			
FDL2	Α	Leerlaufregler 2-polig / getakteter Masseanschluss			
FDL3Z	Α	Leerlaufregler 3-polig – ZU			
FDL3A	Α	Leerlaufregler 3-polig - AUF			
5V / GND	Α	Versorgungsspannung 5V (Drosselklappenpotentiometer)			
TPS	Е	Drosselklappenpoti Stellungssignal			
OXY	E	Lambdasondensignal			
OXY2	Е	Lambdasondensignal Bank 2			
RPM / GND	Е	Drehzahlsensor (VR oder Hall)			
CLT / GND	E	Wassertemperatursensor			
AIR / GND	Е	Lufttemperatursensor			
JS2	Α	Ladedruckregelung			
JS5	E	Klopfsensor			
JS7	E	Digital Input			
JS10	Α	Tacho Output (Signal für Drehzahlmesser)			
JS11	Α	Relais Output (R0)			
12V	E	Eingangsspannung 12V			
GR	JAW	Bosch LSU 4.2 : GRAU			
WS	JAW	Bosch LSU 4.2 : WEISS			
GE	JAW	Bosch LSU 4.2 : GELB			
SW	JAW	Bosch LSU 4.2 : SCHWARZ			
GN	JAW	Bosch LSU 4.2 : GRÜN			
RT	JAW	Bosch LSU 4.2 : ROT			
V1	JAW	Analogausgang V1			
V2	JAW	Analogausgang V2			
INJ1	INJ	Einspritzventile Gruppe 1			
GND	INJ	Masse Einspritzgruppen – auf eigenen Massepunkt legen			
INJ2	INJ	Einspritzventile Gruppe 2			
A1	IGN	Zündausgang Zylinder 1			
A2	IGN	Zündausgang parallel zu Zylinder 1 (wasted spark)			
B1	IGN	Zündausgang Zylinder 2			
B2	IGN	Zündausgang parallel zu Zylinder 2 (wasted spark)			
C1	IGN	Zündausgang Zylinder 3			

C2	IGN	Zündausgang parallel zu Zylinder 3 (wasted spark)		
D1	IGN Zündausgang Zylinder 4			
D2 IGN Zündausgang parallel zu Zylinder 4 (wasted spark)		Zündausgang parallel zu Zylinder 4 (wasted spark)		
IGN_GND IGN Masse Zündung – auf eigenen Massepunkt legen		Masse Zündung – auf eigenen Massepunkt legen		

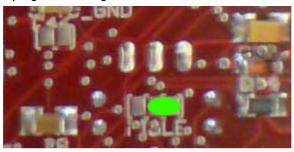
Softwareausgänge:

9	
PT6/IAC1	Relais Output (Ausgang Pin34)
PT7/IAC2	Boost Control PWM Output
	Constant Barometric Correction / 2. Lambdaeingang
PA0	Knock Input
	CAN High
	Digital Input (Launch Control)
	CAN Low
	Tacho Output
	Spark Output D / Relais Output
	Spark Output A
	Spark Output B
	Spark Output C
	PT6/IAC1 PT7/IAC2

4.5 Testbuchse

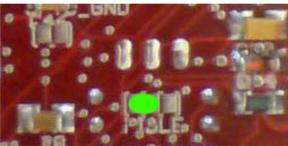
Belegung:

	and the second second		
40	•	39	
38	(O) (B)	37	
36		35	USB P1
34	00	33	USB P2
32	00	31	USB P3
30		29	JAW GREY
28	(I) (I)	27	JAW GREY
26		25	JAW YELLOW
24	00	23	JAW BLACK
22	() ()	21	JAW RED
20		19	GND
18	0 0	17	GND
16	(D)	15	GND
14		13	GND
12	00	11	P6
10	00	9	JS7
		7	JS5
	0 0	5	JS10
4	(O (O)	3	RESET (9S12C64)
2		1	BKGD (9S12C64)
	38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6	38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4	38 37 36 35 34 33 30 29 28 27 26 25 24 20 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3


5. Lötjumper

Die Lötjumper dienen zur permanenten Auswahl bestimmter Motorparameter, wie Art der Drehzahlerfassung, Anzahl der Zündspulen, Typ des Leerlaufreglers, Aktivierung des JAW Controllers usw.

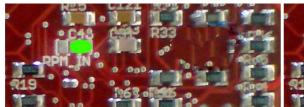
5.1 F-IDLE


Ab der Version V1.3 R71 ist der Lötjumper F-IDLE nicht mehr vorhanden. Der LLR kann ohne Anpassung der Platine an den benötigten Lötaugen angeschlossen werden.

2-poliger Leerlaufregler:

Funktion: Der Regler öffnet eine zusätzliche Luftzufuhr parallel zu der / den Drosselklappe/n, solange der Ausgang FDL2 auf Masse geschalten wird. Schaltet das kdFi den Ausgang nicht mehr auf Masse, schließt eine im Leerlaufregler integrierte Feder die Luftzufuhr wieder. Daher wird dieser Ausgang sehr schnell gepulst (PWM), um eine bestimmte Stellung mit der entsprechenden Pulsweite zu halten.

3-poliger Leerlaufregler:


Funktion: wie bei dem 2-poligen Leerlaufregler, jedoch ohne Feder. Der "ZU" Befehl wird ebenfalls über eine Magnetspule gesteuert. Der Leerlaufregler öffnet, wenn FDL3A (Fast Idle 3-polig auf) nach Masse schaltet, und schließt, wenn FDL3Z (Fast Idle 3-polig zu) geschaltet wird./aktiviert wird.

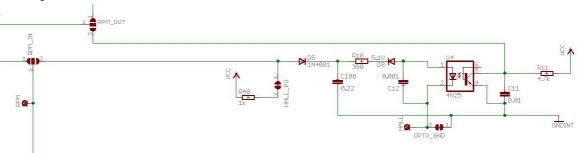
5.2 RPM_IN

VR Sensor: (Standard)

Durch den Lötjumper RPM_IN wird die Art der Drehzahlerfassung ausgewählt. Bei Verwendung eines VR Sensors kann die Werkseinstellung beibehalten werden. Bei Verwendung eines Hall Sensors muss die Verbindung - wie auf den Fotos zu sehen - geändert werden.

Hall Sensor:

C43
C43
R33
RPH_IN
R25
C34
C34
C103


5.3 RPM_OUT

Muss entsprechend RPM_IN gewählt werden. Siehe Bilder in 5.2

5.4 OPTO_GND

Masseschaltung des Hallsensors wie bei MS V3, wenn diese benötigt wird.

5.5 HALL_PU

Bei der Verwendung von HALL Sensoren wird am Eingang des Steuergerätes gelegentlich ein 1k Ohm Pull-Up Widerstand benötigt. Dieser ist ab Version V1.3 R81 bereits integriert und wird durch schließen des Lötjumpers aktiviert.

5.6 **JAW**

Die Option JAW muss aktiviert werden, wenn der JAW Widebandcontroller verwendet werden soll. So wird eine Verbindung der JAW Schaltung Ausgang "V2" zum Eingang "OXY" hergestellt und das analoge Widebandsignal direkt übertragen.

Hierzu wird das Zubehör JAW µC und eine Bosch LSU 4.2 benötigt.

Wenn diese Option gesetzt ist, darf kein externes Lambdasignal am OXY Eingang angeschlossen werden.

5.7 R0

R0 aktiviert den Ausgang JS11 als "Relais Output". Hierzu muss ein Relais mit der Spule an +12V (Zündung) angeschlossen werden, der zweite Anschluss der Spule an JS11. Die Funktion dieses Ausgangs ist dann über Megatune "Extended" – "Output Port Settings" einstellbar.

5.8 BARO OXY

Mit diesem Lötjumper kann ausgewählt werden ob der Eingang JS4 für die automatische Höhenkorrektur oder einen zweiten Lambdasondeneingang (z.B. V8 Motor) genutzt wird.

Verbindung des Lötjumpers bei Lesbarer Schrift:

Mitte-Links: OXY2 / 2. Lambdasondeneingang aktiv

Mitte-Rechts: BARO / Permanente Höhenkorrektur aktiv - 2. Drucksensor muss montiert sein

5.9 IGN A – IGN D

Der Jumper IGN_A dient zur Aktivierung von Zündausgang A. IGN_B bis IGN_D entsprechend für Zündsignal B bis D.

Softwareeinstellungen: Megatune "Basic Setup" - "Tacho input / Ignition Settings"

Beispiele:

Motor mit mechanischem Verteiler: nur IGN_A

1-Zylindermotor: nur IGN_A

2-Zylinder-Reihenmotor mit wasted spark: IGN_A mit 2 Leistungstreibern

4-Zylinder-Reihenmotor mit wasted spark: IGN_A, IGN_B mit je 2 Leistungstreibern

6-Zylinder-Reihenmotor mit wasted spark: IGN_A, IGN_B, IGN_C mit je 2 Leistungstreibern

8-Zylinder-V-Motor mit wasted spark: IGN_A, IGN_B, IGN_C, IGN_D mit je 2 Leistungstreibern (Maximalbestückung)

5.10 SJ201 - SJ204

Vorwiderstandshalbierung der Zündgruppen. Wenn pro Zündausgang nur ein Leistungstreiber verwendet wird, kann der Vorwiderstand für den Leistungstreiber halbiert werden. Im praktischen Betrieb hat sich jedoch herausgestellt, dass der Jumper immer gesetzt sein sollte, um die Störanfälligkeit zu verringern.

5.11 TxD / RxD

Mit diesen beiden Lötjumpern kann man die Datenleitungen zwischen dem USB Chip und dem HC9C12 unterbrechen. Dies ist derzeit nur als Option für eigene Erweiterungen vorhanden.

Bei normaler Betriebsart müssen beide Lötjumper verbunden sein

6. Inbetriebnahme

Achtung:

- Das kdFi V1.3 ist durch eine selbstrückstellende thermische Sicherung (Polifuse) geschützt. Diese wird durch Abschalten der Versorgungspannung UND gleichzeitiges Abkühlen zurückgesetzt.
- Achten Sie darauf, dass die TO220 Gehäuse der Leistungsteile nicht alle dasselbe Potential besitzen und daher zum Kühlkörper isoliert hin werden müssen. Z.B. mit Glimmerscheiben und Plasikstopfen.
- Das Betreiben des kdFi ohne Kühlkörper führt zu einer Zerstörung der Leistungsbauteile!

6.1 Leuchtdioden

Beschreibung	Farbe	Funktion
RS232 A TxD	gelb	Datenpaket von USB an MS2
RS232 A RxD	grün	Datenpaket von MS2 an USB
RS232 B TxD	gelb	Datenpaket von USB an JAW
RS232 B RxD	grün	Datenpaket von JAW an USB
D15	blau	Softwareabhängig (Standard: Zündimpuls)
D16	blau	Softwareabhängig (Standard: Kaltlauf)
D17	blau	Softwareabhängig (Standard: Beschleunigung)
Knock	rot	Klopfen erkannt

6.2 Drehzahlerfassung

1. VR Geber

Bei PKW-Motoren ist der in Europa am meisten verbreitete Weg die Erfassung über einen VR Geber. Dabei wird durch eine Metallscheibe mit 60-2 oder 36-1 Zähnen eine Wechselspannung in der Spule des VR Gebers induziert. Es muss die Spannungsschwelle mit dem **Poti R55** und die Hysterese mit dem **Poti R54** eingestellt werden.

Diese Potis haben keinen Endanschlag. Das Ende ist meist durch ein leichtes, sich bei jeder Umdrehung wiederholendes Klicken erkennbar. Im Zweifelsfall können Sie ca. 30 Umdrehungen gegen den Uhrzeigersinn drehen, dann ist das Poti sicher auf Nullstellung.

2. HALL Geber

Um einen HALL Geber zur Drehzahlerfassung zu nutzen müssen die Lötjumper RPM_IN und RPM_OUT (Punkt 5.2) richtig gesetzt werden. Zusätzlich wird empfohlen den Lötjumper HALL_PU (Punkt 5.5) zu schließen.

3. Zündspulensignal

Für "Fuel only" Varianten, bei denen die vorhandene Zündungssteuerung beibehalten werden soll, kann das Drehzahlsignal direkt an der Primärseite (12V) der Zündspule abgegriffen werden.

Achtung: Schließen Sie niemals eine Messleitung an der Hochspannungsseite der Zündspule an. Dies führt zu einer kompletten Zerstörung des kdFi und kann lebensgefährliche Situationen herbeiführen!

6.3 Sensoren

Das kdFi ist ab Werk intern auf Bosch Sensoren abgestimmt. Eine getrennte Kalibrierung der Sensoren per Software ist über Megatune möglich.

Falls gewünscht kann dies auch durch Austausch der beiden bedrahteten Widerstände R4 und R7 auf der Platine geändert werden.

Sensor	Hersteller	Vorwiderstand
AC Delco/GM	Daewoo, Buick, Cadillac, Chevrolet, Oldsmobile, Pontiac, GMC	2.49k
Ford	Ford, Lincoln, Mercury	27k
Bosch und Nippon	Acura, Audi, BMW, Honda, Infiniti, Jaguar, Kia, Lexus, Mazda, Mitsubishi,	
Denso	Nissan, Suzuki, Toyota, Volkswagen, Volvo (96-up)	2.2k (Standard)
Mopar	Chrysler, Dodge, Plymouth	9.31k

6.4 Drosselklappenpotentiometer

Das Drosselklappenpotentiometer wird über ein 3-adriges Kabel angeschlossen. An die äußeren, statischen Anschlüsse des Potis werden +5V und GND angeschlossen. Über den Schleifkontakt wird die der Drosselklappenstellung entsprechende Spannung abgegriffen und am Eingang TPS (Throttle Position Sensor) angeschlossen.

Der mögliche Weg des Potis darf dabei größer sein als die Drehung der Drosselklappenachse. Die entsprechende Kalibrierung erfolgt über Megatune "Tools" – "Calibrate TPS".

6.5 Knock Input

Als Sensoren können herkömmliche Klopfsensoren (vorzugsweise original am Motor verbaute) verwendet werden. Die Klopffrequenz kann über das Poti R88 eingestellt werden. Zur Kontrolle oder zum Vervielfachen der Einstellung kann am Steckverbinder JP1 eine zur eingestellten Klopffrequenz passende Referenzspannung gemessen werden. Die rote Leuchtdiode D30 dient als Abstimmungshilfe. Sie signalisiert, dass ein erkanntes Klopfen zum Prozessoreingang geleitet wird.

6.6 Digital Input

Es steht ein digitaler Eingang zur Verfügung, der z.B. für die "Launch Control" verwendet werden kann. Die entsprechende Funktion muss in Megatune festgelegt werden. Als Eingang ist hierbei JS7 anzugeben.

6.7 Kennfeldumschaltung

Über den Eingang "TBL" kann ein zweiter Parametersatz im Steuergerät aktiviert werden. Durch einen Schalter der den Eingang auf Masse legt wird zwischen zwei hinterlegten Zünd- und Einspritzkennfeldern umgeschalten. Dies ist sinnvoll bei verschiedenen Abstimmungen wie: Straße/Rennbetrieb, Benzin/Gas, Benzin/E85 usw.

Der Anschluss einer höheren Spannung als 5V führt zur Zerstörung des Prozessors der kdFi. Digitaleingänge dürfen nur gegen Masse geschalten werden.

6.8 Barometric Correction

Zur Nutzung der permanenten Höhenkorrektur muss auf der Rückseite ein zweiter Absolutdrucksensor (MPX4250) eingebaut sein, welcher ab Werk nicht installiert ist.

Die Option "Barometric Correction" muss in Megatune "Basic Settings" – "General,lags" aktiviert und unter "Extended" – "Barometric Correction" eingestellt werden.

Als Eingang muss JS4 gewählt sein.

Der Sensor wird neben dem MAP Sensor auf den Lötpads direkt auf die Platine montiert

6.9 Tacho Output

Für Standard-Drehzahlmesser ist der Ausgang "Tacho Output" vorgesehen. Dieser kann in Megatune "Extended" – "Tacho Output" aktiviert werden. Als "Output on" ist "IGN (JS10)" zu wählen.

6.10 Leerlaufregler

Das kdFi V1.3 unterstützt sowohl 2- als auch 3-polige Leerlaufregler. Anschlüsse des Leerlaufreglers:

2-polig: +12V und FDL2

3-polig: +12V und FDL3A (auf) und FDL3Z (zu)

6.11 Zündung

Über den auf dem kdFi V1.3 vorhandenen Leistungstreiber kann die Zündspule direkt angesteuert werden. Hierfür wird ein mehradriges geschirmtes Kabel empfohlen. Das kdFi kann auf bis zu 8 Leistungstreiber erweitert werden, was eine direkte Ansteuerung von bis zu 8 Zündspulen im Wasted Spark Prinzip ermöglicht.

Alternativ können auch Zündmodule wie EDIS oder Bosch verwendet werden.

Das Triggersignal hierzu kann am Lötjumper IGN_A bis IGN_D abgegriffen werden.

6.12 Einspritzung

Es sind 2 Ausgänge (INJ1, INJ2) für Einspritzgruppen vorhanden. Der zusätzliche Masseanschluss (INJ_GND) zwischen den Ausgängen sollte möglichst niederohmig (mit hohem Leiterguerschnitt) auf Masse gelegt werden, um

Potentialverschiebungen auf der Platine zu vermeiden. Die Einspritzdüsen werden über die Zündung mit +12V versorgt, die Masseleitungen der Düsen wird über das Steuergerät geschaltet.

Achtung: Die Einstellung, ob es sich um hoch- oder niederohmige Einspritzdüsen handelt, muss in Megatune

"Basic Settings" – "Injector Characteristics" unbedingt vor dem ersten Testlauf gemacht werden, da eine falsche Einstellung hier zu Zerstörungen an den Einspritzdüsen oder dem kdFi führen kann!

Startwerte (ohne Gewähr):

Hochohmig: PWM Current Limit (%): 100

PWM Time Threshold (ms): 25,5

Niederohmig: PWM Current Limit (%): 30

PWM Time Threshold (ms): 1,5

6.13 Relais Output

Siehe 5.7 R0

6.14 Ladedruckregelung

Der Ladedruck wird über ein schnellschaltendes Ventil am Waste Gate geregelt. In MSextra wird dieser Teil der Software als "EXPERIMENTAL – mit Vorsicht benutzen" beschrieben. Für weitere Details lesen Sie bitte den aktuellen Stand im Internet nach.

6.15 JAW

(Just Another Wideband von Alan To - www.14point7.com)

Für eine platzsparende, günstige Lösung wurde die JAW Schaltung auf dem kdFi V1.3 integriert. Durch das Nachrüsten des gesockelten JAW Prozessors steht sofort ein Wideband Lambdacontroller zur Verfügung, dessen Analogausgang "V2" über den sich auf der Rückseite der Platine befindenden Lötjumper "JAW" mit dem "OXY" Eingang des kdFi intern verbunden werden kann.

JAW lässt sich dann über die Software JAW Deploy und den zweiten seriellen Port, der nach dem Anschluss des kdFi installiert wurde, ansprechen und konfigurieren.

6.16 CAN Bus

Der CAN Bus ist wie bei der Megasquirt 2 hardwareseitig vorbereitet, muss aber sofern gewünscht noch vom User entsprechend programmiert werden. Weitere Informationen hierzu finden Sie im Internet auf den einschlägigen Megasquirt / MSextra Seiten.

7. Firmware Updates:

Firmwareupdates werden - wie bei MSextra üblich - **ohne** das Setzen eines Bootjumpers gemacht. Starten Sie hierzu das Programm "Download-Firmware" aus dem Megasquirt Ordner in Ihrem Windows Startmenü und wählen Sie den gleichen COM Port wie in Megatune.

Megatune muss während des Firmwareupdates geschlossen sein, um Zugriffskonflikte zu verhindern.

Die Zündspulen müssen bei jedem Firmwareupdate unbedingt abgesteckt werden bis wieder eine korrekte Konfiguration (MSQ Datei) geladen wurde, da es sonst zur Zerstörung der Leistungstreiber wie auch der Zündspulen kommen kann!

8. Notizen:							